15878764961

技术应用

Technology application
技术应用
首页 -技术应用 -技术交流 -每分钟生产5台5G基站?中兴厉害了!科普:信号与频谱知识!

每分钟生产5台5G基站?中兴厉害了!科普:信号与频谱知识!

发布时间:2021-12-28作者来源:金航标浏览:553

1. 科普:每分钟生产5台5G基站?中兴厉害了




5G普及率逐渐提高,越来越多用户过上了5G生活,而在5G领域内,中兴通讯是不容忽视的企业。自5G规模化商用以来,中兴迎来了一波发展期。

最近的2021 世界移动大会上,中兴就表示,其南京滨江 5G 生产基地,实现了每分钟生产5台5G基站的成绩,产品发往全球。而且,处于迭代发展期的5G发展潜力逐渐显现,5G基站的建设数量将持续增长,今年下半年或还将迎来5G基站的大规模发货和建设,这对于中兴来说,也是机会所在。



2. 科普:信号与频谱知识!


1

信号简介



信号(singal)简介


我们在生活中经常遇到信号。比如说,股票的走势图,心跳的脉冲图等等。在通信领域,无论是的GPS、手机语音、收音机、互联网通信,我们发送和接收的都是信号。最近,深圳地铁通信系统疑似与WiFi信号冲突,也就是地铁的天线收到了WiFi的信号,而误把该信号当作地铁通信信号。我们的社会信息化,是建立在信号的基础上的。


信号是随着时间或者空间变化的序列。在信号处理中,我们常用“信号”来特指一维信号,也就是只随单一一个时间或空间维度变化的序列,这样的信号在数学上可以表示成f(t)或者f(x)这样一个函数。与一维信号形成对应的是多维信号,比如说图像是二维信号,它随x,y两个空间维度变化,从数学上表示成为f(x, y)。[敏感词]在没有特别声明的情况下,都使用“信号”来代指一维信号。


尽管信号的使用如此广泛,但信号从数学意义上来并没有什么神秘的地方,只是普通的序列(函数)。信号处理的方法可以通用于任何一个领域的信号(无论是通信、金融还是其他领域),这也是信号处理的魅力所在。



2

简谐



简谐波(simple harmonic)


正弦波(sine wave)和余弦波(cosine wave)统称为简谐波。简谐波是自然界最常见的波动。




正弦波


正弦波可以写成函数的形式: 



可以看到,一个简谐波三个参数,振幅(A, amplitude)、频率(f,frequency)、相位(phi, phase)。这三个参数分别控制正弦波的不同特征。通过调整它们,我们可以得到不同的正弦波信号。 

左上:原始           右上:2倍振幅 

左下:2倍频率       右下:相位移动


可以看到,频率高,“山峰”越密集。振幅高,“山峰”越高。相位改变,“山峰”的位置左右移动。(朋友说我是"用音量控制音调":唱歌本应该改变频率高低的时候,却在改变振幅的高低。)

 

余弦波(cosine wave)函数形式与正弦波类似,用cos表示。我们可以通过改变正弦波来从正弦波获得余弦波。



3

傅立叶变换


傅立叶变换 (Fourier Transform)


简谐波虽然简单,但对信号处理具有重要意义。傅立叶是一名工程师,他发现,任何信号实际上都可以通过简谐波相加近似得到。也就是傅立叶定理(Fourier inversion theorem):任何一个信号都可以由简谐波相加得到。因此,复杂的信号可以分解成为许多个简单的简谐波。一个信号由多个频率的简谐波相加得到。组成信号的某个简谐波,称为信号的一个分量(component)。

 

比如下图,显示了我们如何用简谐波的叠加来不断趋近蓝色的信号:

 

图片

来自Wikipedia

 

傅立叶变换是一套固定的计算方法,用于算出信号的各个分量(也就是上面的an,bn)。在信号处理时,可以将信号进行傅立叶变换,转换为简谐波的组合。通过分别控制各个频率上的简谐波分量,我们可以更加有效的进行信号处理。比如说,我们通信的时候可以使用高频的简谐波信号。但是接收信号的天线可能会收到其他频率的干扰信号。这个时候,我们可以对接收到的混合信号做傅立叶变换,只提取目标高频的分量。这是降低信号噪音的常用方法。傅立叶变换的过程有些复杂,但已经有大量的程序可以帮你进行。你所需要的只是输入信号,计算机会帮你算出它的各个分量。

 

比如说,如果信号f(x)是周期性的,我们可以将它变换成:



也就是说,一个信号可以看做许多简谐波的和。上面的a,b是可以通过原信号求得的参数为:



a, b代表了信号在各个频率上的简谐波分量的强弱(以及相位)。这样,信号就分解为了简谐波的和。由于简谐波比较容易理解,我们可以通过研究这些分量,来明白复杂信号背后的机制。



4

频谱


频谱(frequency spectrum)


通过傅立叶变换,我们可以得到一个信号f(t)的不同频率的简谐波分量。每个分量的振幅,代表了该分量的强弱。将各个频率分量的强弱画出来,可以得到信号的频谱。比如下图是从每天降水序列中得到的频谱:




可以看到,以1年为周期的简谐波分量有一个明显的高峰。也就是说,一年周期的分量有比较强。这是有物理原因的。因为降水总是以一年四季为周期有规律的变化。通过信号->Fourier Transform->频谱,我们可以从简谐波分量的角度,理解复杂信号是由哪些简谐机制合成的。

 

图像处理(Image Processing)


傅立叶变换同样可用于多维信号。把傅立叶变换用于二维信号,即图像:



左边是二维信号(图像,f(x,y))。黑白可以用数值表示,即信号值。右边是二维图像的频谱。X轴表示x方向的频率,Y轴表示y方向的频率,黑白表示不同频率分量的振幅强弱。在[敏感词]一行中,Lenna被故意加上了噪声,并引起频谱的相应变化。频谱的中心代表了低频信号的振幅,频谱远离中心的地方代表了高频信号的振幅。 我们[敏感词]和加入噪声的图像比较。

 

Lenna和她的频谱


现在,在图像中加入噪声。可以看到,原图像中各处增加了许多小“斑点”。这些斑点和原来的信号混合在一起。我们很难将一一指出这些噪音点。但另一方面,这些噪音又有一定的特征:这些噪音的空间尺度(即尺寸)很小。


这一对图像噪音的理解,可以从频谱中得到确认。从右图的频谱中可以看到,高频信号(非中心部分)明显增强。高频分量正对应空间尺度小的信号。可见,噪声在频谱中,集中在高频这一特定区域。这样,在与原图像混合在一起的噪声,在频谱上则和图像区分开。通过高频滤波技术,就可以过滤掉噪声。这也是图像降噪的一大方法。


(如果对图像处理有所了解,那么一定会知道Lenna的大名。她是一位阁楼(Playboy)女郎,但又是图像处理界的女神。你可以搜索"Lenna full image"来找到全图。Lenna现在是一名老太太了,她“见证”了图像处理的发展。)



5

总结




信号可以分解为不同频率的简谐波分量。这有助于我们更好的理解复杂的信号。傅立叶变换是信号处理(以及图像处理)的基础工具。通过傅里叶变换,我们可以获得信号的频谱。


频谱为我们提供了理解信号的另一个视角。在频率的世界里,我们可以发现很多原信号中一些可能被忽视的信息,比如降水的季节变化,比如增强的噪声。


“Kinghelm”商标由金航标公司原始注册,金航标是GPS天线北斗天线研发生产直销厂家,在北斗GPS导航定位行业非常高的知名度和美誉度,研发生产产品广泛应用于bds卫星导航定位无线通信等领域。主要产品包括:RJ45-RJ45网络,网络接口连接器、射频连接器转接线、同轴线缆连接器、type-c连接器、hdmi接口type-c接口、排针排母、SMA、fpc、FFC天线连接器、天线信号传输防水接头、hdmi接口、usb连接器、端子端子线、端子板接线端子、接线端子排、射频rfid标签、定位导航天线、通讯天线天线连接线、胶棒天线吸盘天线、433天线4G天线,GPS模块天线等。广泛应用于航天航空、通信、军工、仪器仪表和安防、医疗等行业。


该内容来自于网络/滤波器,本网站仅提供转载,该文观点立场技术等与本网站无关,如有侵权,请联络我们删除!

友情链接: 站点地图 Kinghelm 金航标官网 萨科微slkor英文站萨科微slkor网站地图iCEasy元器件商城儿童电话手表网络货运平台蓝牙模块高清视频会议撬装加油SRAM